Anytime Optimal Decision Tree Learning with Continuous Features

Harold Silvere Kiossou®', Pierre Schaus®' Siegfried Nijssen®'?,

1,2

'UCLouvain, ICTEAM, Louvain-la-Neuve, Belgium
2KU LEUVEN, DTAI Leuven, Belgium
harold.kiossou@uclouvain.be , siegfried.nijssen @kuleuven.be, pierre.schaus @uclouvain.be

Abstract

In recent years, significant progress has been made on algo-
rithms for learning optimal decision trees, primarily in the
context of binary features. Extending these methods to con-
tinuous features remains substantially more challenging due
to the large number of potential splits for each feature. Re-
cently, an elegant exact algorithm was proposed for learning
optimal decision trees with continuous features; however, the
rapidly increasing computational time limits its practical ap-
plicability to shallow depths (typically 3 or 4). It relies on a
depth-first search optimization strategy that fully optimizes
the left subtree of each split before exploring the correspond-
ing right subtree. While effective in finding optimal solutions
given sufficient time, this strategy can lead to poor anytime
behavior: when interrupted early, the best-found tree is of-
ten highly unbalanced and suboptimal. In such cases, purely
greedy methods such as C4.5 may, paradoxically, yield better
solutions. To address this limitation, we propose an anytime,
yet complete approach leveraging limited discrepancy search,
distributing the computational effort more evenly across the
entire tree structure, and thus ensuring that a high-quality de-
cision tree is available at any interruption point. Experimental
results show that our approach outperforms the existing one
in terms of anytime performance.

Code —
https://anonymous.4open.science/r/contree-rs-C7B8

Datasets — https://anonymous.4open.science/r/contree-rs-
C7B8/datasets/

Introduction

Decision trees are widely used in machine learning due to
their simplicity and interpretability, with applications in do-
mains such as healthcare, finance, and education. Learn-
ing decision trees is typically performed using greedy al-
gorithms, such as CART (?) and C4.5 (?), which construct
trees in a top-down manner by selecting a split at each
node according to a heuristic criterion. While these greedy
approaches are highly scalable, they often produce trees
that are less accurate than their optimal counterparts (?).
While learning optimal decision trees (ODTs, trees that
minimize the classification error on the training set) is an

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

NP-hard problem, recent advances in computational power
and algorithmic techniques have enabled the development
of methods that successfully learn such trees. These algo-
rithms leverage combinatorial optimization techniques from
mixed-integer linear programming (MILP) (??), constraint
programming (?), and SAT (?), but they struggle to scale
with dataset size. Dynamic programming (DP) and branch-
and-bound (BnB) based approaches (??) significantly im-
prove scalability, but cannot directly handle numeric fea-
tures. Consequently, these methods either rely on binariza-
tion, which leads to a loss of optimality, or introduce a binary
feature for each possible threshold of a numeric attribute.
The latter severely harms scalability, as the runtime grows
exponentially with the number of features.

To address this limitation, Quant-BnB (?) is a specialized
algorithm designed to learn optimal decision trees directly
from numeric data. It considers splits at selected quantiles
of the feature distribution and uses the resulting solutions to
prune other parts of the search space. While Quant-BnB sig-
nificantly outperforms previous approaches on numeric fea-
tures, it does not scale beyond depth 3. ConTree (?) is a sub-
sequent algorithm that combines dynamic programming and
branch-and-bound techniques with novel bounding strate-
gies and a specialized solver for depth-2 optimal decision
trees. This enables learning depth-4 optimal decision trees
on medium-sized numeric datasets within a reasonable time.

While effective at proving optimality, these methods are
not anytime algorithms, as they prioritize bound tightening
over early solution quality. Approaches such as DL8.5 (?)
or ConTree explore the search space in a depth-first fash-
ion, which often causes it to become stuck in unpromising
regions, as illustrated in Figure [T} As a result, it may re-
turn poor trees when stopped early. Greedy methods like
C4.5 provide quick results but lack the capacity to improve
or guarantee optimality over time. Neither approach pro-
vides the benefits of a true anytime algorithm, which should
quickly produce a good initial solution and then continu-
ously improve it as time permits, eventually proving opti-
mality.

To improve the anytime performance or scalability of ex-
act methods, three notable works have been proposed. LDS-
DL8.5 (?) integrates limited discrepancy search (LDS) into
DLA&.5, resulting in an algorithm that is both anytime and
complete. Top-k-DL8.5 (?) modifies DL8.5 by restricting

https://orcid.org/0000-0001-6972-9885
https://orcid.org/0000-0002-3153-8941
https://orcid.org/0000-0003-2678-1266
https://anonymous.4open.science/r/contree-rs-C7B8
https://anonymous.4open.science/r/contree-rs-C7B8/datasets/
https://anonymous.4open.science/r/contree-rs-C7B8/datasets/

Figure 1: ConTree explores the leftmost branches first, often
leading to poor anytime performance when interrupted early.

the candidate features at each node to the Top-%k according
to a ranking heuristic. This is a compromise between C4.5
and DLS.5: faster and more scalable, but unable to guaran-
tee convergence to the optimal tree. Finally, the Blossom al-
gorithm (?) follows a fundamentally different search strat-
egy. It uses a depth-first approach that expands decision tree
nodes level by level, offering improved anytime behavior
by avoiding the possible result of highly unbalanced trees
when interrupted early, as for DL8.5. Blossom is guaranteed
to find the optimal tree given sufficient time.

In this work, we introduce CA-ConTree, a novel algo-
rithm for learning decision trees on continuous features that
is : complete (guarantees optimality when given sufficient
time), anytime (produces high-quality solutions early and
improves them over time). Limited discrepancy search al-
lows CA-ConTree to prioritize promising regions of the
search space early and progressively broaden exploration
over time. Our experimental results show that CA-ConTree
exhibits strong anytime behavior, outperforming ConTree on
medium-sized datasets at depths 4 and 5, while producing
trees that generalize better under time-limited conditions.

Related Works

Greedy approaches Learning decision trees has histori-
cally relied on greedy algorithms such as CART (?) and
C4.5 (?), which optimize local splitting criteria at each node.
While these approaches scale well, they are prone to sub-
optimal solutions due to their myopic nature. In particular,
greedy induction tends to produce trees that are larger than
the optimal tree on average (?), or, when constrained to a
fixed depth, yields lower out-of-sample accuracy than opti-
mal trees under the same size limit (?). As a result, recent
research has shifted toward Optimal Decision Trees (ODTs)
that leverage combinatorial optimization techniques. These
include Mixed-Integer Programming formulations (?) and

logic-based paradigms such as SAT (?), MaxSAT (?), and
Constraint Programming (CP) (?). However, a persistent
challenge remains: the inherent NP-hardness of optimal de-
cision tree induction severely limits the scalability of these
approaches when applied to large datasets or more complex
model configurations.

Dynamic programming approaches ??, introduced
DLS, an early dynamic programming approach for optimal
decision tree learning on binary features. This was later
improved by ? with DL8.5, which incorporates branch-and-
bound and enhanced caching techniques to significantly
reduce the search space. Other works focused on deriving
stronger bounds: ? and ? proposed new lower bounds, in-
cluding a subproblem similarity bound, to prune redundant
computations. More recently, ? introduced a specialized
subroutine for depth-two trees and additional constraints
to limit the number of branching nodes, further improving
efficiency.

Continuous features Specialized approaches for learn-
ing optimal decision trees (ODTs) directly from continuous
data are relatively recent. The first such method, Quant-BnB
(Mazumder, Meng, and Wang, 2022), tries to learn optimal
decision trees on continuous data by splitting on quantiles of
the feature distribution and using the results to bound other
parts of the search space. Although it can handle much larger
datasets than MIP or SAT-based approaches, it struggles to
scale beyond trees of depth three. More recently, ? proposed
ConTree, which leverages the Similarity Lower Bound intro-
duced in OSDT and GOSDT (??) to implement three types
of pruning and lower bounds. This allows ConTree to reduce
both the computational cost and search space, enabling it to
scale better than Quant-BnB and to learn ODTs on medium-
sized datasets with a maximum depth of four.

Anytime approaches Dynamic programming approaches
have one notable limitation: if interrupted, they typically
produce an incomplete or unbalanced decision tree, which
can be of lower quality than one constructed by greedy
heuristics. To address this and improve anytime perfor-
mance, recent work has explored strategies for generat-
ing good intermediate solutions during the search. ? intro-
duced LDS-DL38.5, which applies iterative Limited Discrep-
ancy Search (LDS) to prioritize solutions that are close to a
heuristic baseline tree first.

Similarly, the Blossom algorithm (?) employs a different
search strategy to improve anytime behavior. While it also
uses depth-first search, Blossom proceeds layer by layer, al-
ways expanding the non-expanded node closest to the root.
As with LDS-DLA8.5, the first solution found corresponds to
the tree that would be produced by a purely greedy strategy.

Background

Learning an optimal decision tree (ODT) is performed on a
dataset D consisting of n = |D| observations (z, y), where
r € RP is the feature vector and y €) is the corre-
sponding label. Let p denote the number of features, with
F =A{f1, f2,..., [p} representing the set of features and)/
the set of classes. For each observation, x ; denotes the value

(0,00 (0,1) (1,00 (L1) (0,1) (1,1)

(1,0 (1,1) (1,1)

Figure 2: Representation of the search tree for decision tree learning on numeric data with a feature discrepancy budget of 1
and a split discrepancy budget of 1. For each feature f, candidate split decisions are represented as fy,, where 6, denotes the
index of a possible threshold in the ordered split set S/. Nodes shown in red correspond to decisions that are not explored due

to the imposed discrepancy budgets.

of feature f. For a given feature f, let D/ denote the sorted
values of x s across all (x,y) € D, and let U/ denote the set
of unique values in D7. We define the set of candidate split
points for feature f as

A S 7 7/
Sf:{U1+U2 jusi-1 |uf}’ n

3 ey 3

which contains the midpoints between consecutive unique
values of f.Let m = |S/| be the number of possible thresh-
olds. Given a threshold 7 € S7, let D(f < 7) describe
the subset of observations (z,y) € D where zy < 7. Let
T (D, d) describe the set of all decision trees for the dataset
D with a maximum depth of d. Then the optimal classifica-
tion decision tree 1, is the tree that minimizes the misclas-
sification score:

Y oIt £y @

z,y) €D

topt = ar min
opt g teT(D.)

ConTree

ConTree (CT) learns ODTs by recursively performing splits
on every branching node within a full tree of pre-defined
depth. Subproblems are identified by the dataset D and the
remaining depth limit d. This can be expressed with the fol-
lowing recurrence equation:

i Iy ifd=0
min > 15 # vl i
(z,y)€D
min [CT(Dy<,,d—1)
feF,res’f -

CT(D,d) =
+ CT(Dfsr,d—1)], ifd>0.

3

At each internal node, the optimal split is obtained by jointly
minimizing over all features f € F and their associated
thresholds 7 € S, selecting the split that minimizes the
sum of misclassification scores of the resulting left and right
subproblems. The splits are enumerated dichotomously to

progressively narrow the interval of candidate splits. No spe-
cific heuristic is used to guide the order of splits.

Since evaluating the misclassification score for all pos-
sible thresholds can be computationally expensive, Con-
Tree leverages lower-bound pruning, a specialized depth-
two subroutine that iterates over sorted feature data to up-
date class occurrences and efficiently solves, and the same
caching mechanisms as in (?) to improve runtime.

CA-ConTree

In this work, we propose the Complete Anytime Contin-
uous Tree (CA-ConTree) algorithm, which leverages lim-
ited discrepancy search (LDS) (?) combined with a split or-
dering heuristic to build an anytime algorithm for decision
tree learning. LDS explores solutions in increasing order of
deviations from a heuristic, based on the assumption that
high-quality solutions differ from the heuristic-guided so-
lution by only a small number of decisions. This is quite
different from standard depth-first search, which blindly ex-
plores one branch to its end. LDS can be implemented on
top of depth-first search by enforcing a discrepancy budget
during depth-first search and progressively increasing this
budget to ensure completeness. At each node, only children
within the remaining budget are expanded, and the budget
decreases with depth, favoring fewer deviations from the
heuristic deeper in the tree.

Algorithms [T] and [2] present the overall structure of CA-
ConTree. Algorithm [1| describes the main search mecha-
nism. The outer loop (Lines[3H7) repeatedly invokes the sub-
procedure CT while progressively increasing the discrep-
ancy budgets (Line[6]) and tightening the global upper bound
UB (LineB).

To prevent the search from becoming trapped in deep, un-
promising regions of the search space, we introduce two dis-
tinct discrepancy budgets: featDisc, which limits the num-
ber of features considered at each node, and splitDisc,
which limits the number of split thresholds explored for each
feature. Since the number of possible thresholds per feature
can be large, the search may otherwise spend excessive time
exploring deep subtrees without improving the global tree

Algorithm 1: CA-ConTree(D, d,UB)
1 Hopt — I‘l)neli} Z(w,y)ED H(Q 7é y)

2 featDisc + 0, splitDisc < 0

3 while budgetRemains (featDisc, splitDisc) do
4 Oopt <+ CT(D,d,UB, featDisc, featDisc)

5 UB < min (0, UB)

6 (featDisc, featDisc) «—

nextBudget (featDisc, featDisc)

7 end

8 Procedure CT(D, d,UB, featDisc, splitDisc)

9 if d = 0 then return min > (eyyen 1 #y)
10 Fordered < heuristicSort (D)

11 for it < 0to |Fordered| — 1 do

12 f <~]:orde'red [Zt]
13 disc + featDisc — it
14 if disc < 0 then return 6,
15 9f —
Branch (D, d, f,UB, disc, splitDisc))
16 if 0; < 0,p; then
17 ‘ Gopt<—9f,UB<—9f
18 end
19 end
20 return 6,,,
21 end

22 return 0,

error. By enforcing discrepancy budgets on both features and
thresholds, CA-ConTree enables fine-grained control over
the growth of the search space and allows exploring different
strategies for increasing the budgets to achieve anytime be-
havior. Concretely, at a given node, the discrepancy budgets
(featDisc, splitDisc) limit the cumulative number of devi-
ations from the heuristic along a branch: at most featDisc
features can be chosen out of heuristic order, and for each se-
lected feature, at most splitDisc thresholds can be explored
out of the heuristic ranking. Figure 2]illustrates a portion of
the search tree for learning a decision tree on numeric data
with maximum feature and split discrepancy budgets set to
(1,1). The number shown below each branch denotes the
cumulative discrepancy cost incurred by the corresponding
decision. The leftmost branch corresponds to the best de-
cision according to the heuristic and is therefore expanded
first with the minimal budgets (0, 0). At depth 1, expanding
feature b requires a minimum feature discrepancy of (1, 0),
while selecting split f5 for feature a incurs a split discrep-
ancy of (0,1). Any deviation from the leftmost branch in-
creases the discrepancy budgets, whether the deviation oc-
curs at the feature-selection level or at the split-selection
level. As aresult, portions of the search space that exceed the
available budgets are pruned, as indicated by the red nodes
in the figure. With a maximum budget of (1, 1), feature b is
explored less extensively than feature a, since branching on
b already exhausts the feature discrepancy budget, and the
low split discrepancy budget further limits the exploration
of alternative thresholds.

Algorithm 2: Branch(D, d, f,UB, featDisc, splitDisc)
1 eopt «— %%%}Z(m,y)GD]I(:l) 7& y)
2 splits + heuristicSort ({1,2,...,m})
3 pruned « 0lsplits|
4 for it < 0 to |splits| — 1 do
5 w < splits|it]
disc < splitDisc — it
if disc < 0 then

| return 6,,,
end
10 if pruned[it] = 1 then continue
11 if d =2 then 0, 1,0, r < D2Split(D, f,w)
12 else

o e I &

13 Dy« D(f < 51).,Dr + D(f > 51)
14 Ow.r < CT(Dr,d — 1,UB, featDisc, disc)
15 0w R

CT(Dg,d—1,UB — 8, 1., featDisc, disc)
16 end

17 O <_6w,L+9w,R

18 if 6, < 0,y then

19 | Oopt < O, UB < min(UB, 0.,)
20 end

21 A + max(1,60,, —UB);

22 | foreachk € [w— A.w+ A]do

23 | pruned[k] < 1

24 end

25 end

26 return 6,

The procedure CT expands features within the current
feature discrepancy budget by calling Algorithm [2} process-
ing features in the order determined by a heuristic (Line[I0),
which is the Gini score in our implementation. Algorithm [2]
iterates over the candidate split thresholds of a given feature
to identify the best split under the current discrepancy bud-
gets.

In contrast, ContTree (?) enumerates splits in a di-
chotomic fashion, recursively selecting thresholds at the
midpoint of a current interval and using pruning strategies
to shrink the interval. However, because it always splits in
the middle, this process is not guided by any heuristic. More
specifically, let {1,2,...,m} denote the indices of the can-
didate splits in S/ for feature f. ConTree first evaluates the
split at the midpoint index.

CA-ConTree adopts instead a more classical search strat-
egy. Candidate thresholds are first ordered according to a
heuristic measuring their potential impact (Line [2)), and the
search iterates over them sequentially. For each threshold w,
Algorithm [2| splits the dataset accordingly (Line and re-
cursively calls CT" at a deeper depth with a reduced split dis-
crepancy budget. If a split yields a lower objective value than
the current best, this value becomes the new best and is used
as an updated upper bound for pruning subsequent splits
(Lines 20). When expanding a node whose remaining
depth equals two, CA-ConTree invokes the D2Split proce-

dure (Line TT), as proposed in (?), to learn an optimal deci-
sion tree of depth 2. This guarantees that, for each node, the
subtree rooted at depth maxDepth — 2 is optimal, improv-
ing the overall learning performance. Furthermore, to avoid
exploring all possible splits, the search leverages properties
derived from the similarity lower bound (SLB), in particular
for pruning neighboring candidate thresholds.

Similarity Lower Bound and Neighborhood Pruning.
Proposed in (???), SLB compares a new dataset D;,,, With a
previously analyzed dataset Dqj4 to derive a lower bound on
the misclassification score of the new dataset. SLB assumes
that all observations present in D,.y, are classified correctly,
while all observations removed from D,y are classified in-
correctly. This yields the following lower bound:

eDnew Z HDold - |Dold \Dnewla (4)

where 6p denotes the minimum misclassification score
achievable by a decision tree with the same depth limit on
dataset D. From this bound, several pruning techniques are
derived, including neighborhood pruning. After computing
the misclassification score 6,, for a split point u € [i..j],
neighborhood pruning exploits the SLB to discard nearby
split points from further consideration. Algorithm [2] lever-
ages this property. When a solution is found for a split w
based on the current budgets, the algorithm assumes this so-
lution is the best possible for that split and uses it to prune
the neighbor point as done in lines[21]to[24] Doing so allows
to ignore the currently less promising splits.

Caching. To avoid redundant computations across search
iterations, we employ the same dataset caching strategy as
in (?). This cache is particularly beneficial for calls to the
D2Split subroutine. As discrepancy budgets increase, iden-
tical subproblems are revisited multiple times; retrieving
cached optimal solutions avoids repeated and costly compu-
tations. Moreover, within a single search iteration, a cached
solution can be reused whenever the current discrepancy
budgets are no larger than those associated with the cached
entries.

Increasing discrepancy budget. The discrepancy budgets
can be increased following several possible strategies. A
simple approach consists of increasing both the feature and
split discrepancy budgets linearly, typically by one unit at
each iteration. While this steadily enlarges the search space,
the potentially large number of candidate splits may delay
reaching promising regions, resulting in weak anytime be-
havior. Alternatively, the budgets can be increased exponen-
tially (doubling each budget at each iteration) to accelerate
the exploration of larger portions of the search space. How-
ever, this strategy further degrades anytime performance, as
rapidly increasing budgets increase the likelihood of becom-
ing trapped in deep and unpromising regions of the search
space.

In this work, we adopt a diagonal sweep strategy over
the two-dimensional discrepancy budget space. Search it-
erations are ordered according to the sum of the feature
and split discrepancy budgets, so that both budgets are in-
creased jointly while keeping their total discrepancy con-
stant. Concretely, the algorithm explores budget pairs in the

86001 ¥ —& - Diagonal sweep budgets
Exponential budgets
—e— Linear budgets

©
Iy
o
S

82001

8000 1 L -
e

Ly
|

N

Misclassification score

~
o]
o
o

7600+

0 100 200 300 400 500 600
Runtime (seconds)

Figure 3: Comparison of discrepancy budget scheduling
strategies on a representative dataset (depth 4).

order (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), and so on.
Figure [3] shows the evolution of the misclassification score
over runtime on a full representative dataset (AVILA from
the UCI Machine Learning Repository) using CA-ConTree
with three different discrepancy budget increase strategies
and a timeout of 600 seconds. The linear strategy plateaus
very early, failing to make further progress, while the ex-
ponential strategy achieves better solution quality than the
linear one. However, the large budget jumps induced by
the exponential schedule often cause the search to become
trapped in unpromising regions of the search space. In con-
trast, the diagonal sweep strategy improves solution quality
more rapidly and explores a more diverse set of candidate
trees, resulting in consistently better anytime performance.
Consequently, we adopt the diagonal sweep strategy in all
subsequent experiments.

Results

We conducted a series of experiments to evaluate the per-
formance of CA-ConTree. First, we analyze its anytime be-
havior in comparison with the baseline ConTree (with and
without Gini) approaches, followed by an evaluation of their
ability generalize. All experiments were performed on an In-
tel Xeon Platinum 8160 CPU with 320 GB of RAM, run-
ning Rocky Linux 8.4. The algorithms were evaluated on
the 16 datasets from the UCI Machine Learning Reposi-
tory previously used in (?). We compare CA-ConTree to
the other algorithms using the average primal integral, as
introduced in (?), to measure the anytime behavior of op-
timization solvers. The primal integral aims to measure the
progress of an algorithm’s primal bound convergence toward
the optimal (or best known) solution over the entire solving
time. It is based on the primal function p(t), which repre-
sents the gap between the current solution z(t) at time ¢ and
the optimal or best known solution .. The primal gap of a

Runtime (s)
Approach 5 15 30 60 120 300 600

CA-ConTree 335 265 231 204 183 163 146

ConTree-Gini ~ 89.1 854 774 718 676 60.0 505

ConTree 938 8.0 837 768 703 621 542

C4.5 40.8 40.8 40.8 40.8 40.8 40.8 408

Table 1: Average primal integral on depth 4

Runtime (s)
Approach 5 15 30 60 120 300 600

CA-ConTree 40.2 334 312 295 283 265 248

ConTree-Gini ~ 90.1 892 852 832 822 784 767

ConTree 938 938 938 937 927 839 798

C4.5 502 502 502 502 502 502 502

Table 2: Average primal integral on depth 5

Dataset Train Size C4.5 Contree CA-ConTree Dataset Train Size C4.5 Contree CA-ConTree
skin 196045 0.984 0.994 0.994 skin 196045 0.989 0.991 0.997
avila 16693 0.620 0.616 0.665 avila 16693 0.656 0.627 0.709
occupancy 16448 0.989 0.992 0.991 occupancy 16448 0.989 0.992 0.991
magic 15216 0.820 0.732 0.846 magic 15216 0.841 0.716 0.854
htru 14318 0978 0.935 0.977 htru 14318 0.977 0.906 0.976
eeg 11984 0.698 0.714 0.765 eeg 11984 0.722 0711 0.785
bean 10888 0.891 0.722 0.903 bean 10888 0.897 0.582 0.908
room 8103 0.995 0.996 0.997 room 8103 0.996 0.996 0.995
bidding 5056 0.996 0.995 0.997 bidding 5056 0.995 0.995 0.997
page 4378 0.964 0.963 0.970 page 4378 0.967 00957 0.967
wilt 3871 0.978 0.980 0.982 wilt 3871 0980 0.978 0.977
rice 3048 0919 00917 0.916 rice 3048 0915 0.890 0.900
segment 1848 0914 0.964 0.944 segment 1848 0.937 0.739 0.947
fault 1552 0.667 0.677 0.691 fault 1552 0.673 0.626 0.734
bank 1097 0.978 0.986 0.985 bank 1097 0.983 0.988 0.980
raisin 720 0.857 0.829 0.831 raisin 720 0.841 0.806 0.838

Table 3: Average test set accuracy on depth 5

solution z(t) is defined as
|2(t) — @op|

The function p(¢) equals 1 if no feasible solution has been
found by time ¢, and ~y(x(t)) otherwise. The function p(¢)
is a step function that changes whenever a new feasible so-
lution is found. It is monotonically decreasing and becomes
zero once the optimal solution is reached. The primal inte-
gral P(T) is defined as the integral of the primal gap func-
tion p(t) over the time horizon T

T n
P(T) = /0 p(t)dt = Zp(ti—l) (ti = tiz1),

where each t; denotes a time point at which a new incum-
bent solution is found. The primal integral encourages the
early discovery of high-quality solutions. If a better solution
is found at the same time, P(ty,.x) decreases. Similarly, if
the same solution is found earlier, P(tyax) also decreases.
The ratio P(tmax)/tmax can be interpreted as the average
quality of the solution during the search process. A smaller
value indicates a higher expected quality of the current so-
lution if the algorithm is interrupted at an arbitrary point in
time.

Tables [1] and 2] report the evolution of the average pri-
mal integral across various time budgets (from 5 to 600 sec-

Table 4: Average test set accuracy on depth 6

onds) for tree depths 4 and 5. We compare CA-ConTree
with ConTree using and without the Gini heuristic, as well
as with the greedy C4.5 baseline. Across both depths, CA-
ConTree consistently achieves the lowest primal integral for
all time budgets, highlighting its strong anytime behavior. In
contrast, ConTree and ConTree-Gini improve more slowly
and remain substantially behind, while C4.5 yields a con-
stant primal integral due to its non-anytime, greedy nature.
The gap between CA-ConTree and the other complete ap-
proaches persists even at larger time budgets, indicating that
the LDS strategy enables faster discovery of high-quality so-
lutions throughout the search. The primal integral values ob-
served for ConTree and ConTree-Gini indicate a weak any-
time behavior. Although these approaches are complete and
may eventually reach high-quality or optimal solutions, they
tend to maintain poor incumbents for a large portion of the
runtime. As a result, improvements in solution quality occur
late in the search and contribute only marginally to reducing
the accumulated primal gap. This effect is only partially mit-
igated by the Gini heuristic. C4.5 exhibits constant primal
integral values, as it immediately produces a greedy solu-
tion and does not refine it further. While C4.5 lacks optimal-
ity guarantees, its early availability of a reasonable solution
allows it to perform better than plain ConTree in terms of
primal integral for small and medium time budgets.

Next, we evaluate the test-set performance of ConTree

and CA-ConTree against the baseline C4.5 algorithm using
5-fold cross-validation on the same previous datasets with a
timeout of 600 seconds. Tables [3] and] report the results for
tree depths 5 and 6, respectively.

Overall, CA-ConTree achieves the best or near-best test
accuracy on the majority of datasets, outperforming both
C4.5 and the baseline ConTree in many cases. In particular,
ConTree sometimes fails to surpass the C4.5 heuristic, espe-
cially on datasets such as MAGIC, BEAN, and HTRU, while
the improved anytime behavior of CA-ConTree often allows
it to close this gap and reach higher-quality solutions within
the same time budget.

The benefits of CA-ConTree are most pronounced on
medium-sized datasets, where its ability to discover strong
solutions early and refine them over time leads to consis-
tent improvements in final performance. On a small number
of datasets, C4.5 remains competitive or slightly superior,
particularly at larger depths; however, these differences are
generally modest. Overall, these results indicate that inte-
grating limited discrepancy search does not degrade gener-
alization performance and instead provides a more robust
framework for learning high-quality trees compared to both
greedy heuristics and standard exact baselines.

Conclusion

We introduced CA-ConTree, a novel algorithm for learning
optimal decision trees on continuous features with strong
anytime performance. By integrating limited discrepancy
search and carefully controlling the exploration of both fea-
ture and split discrepancies, CA-ConTree can discover high-
quality solutions early and improve upon them. Experimen-
tal results on a diverse set of benchmark datasets demon-
strated that CA-ConTree consistently outperforms exist-
ing exact methods in time-limited settings, particularly on
medium-sized datasets and for tree depths where standard
approaches struggle. Compared to ConTree, CA-ConTree
achieves substantially better anytime behavior without sacri-
ficing generalization performance, and often surpasses both
greedy baselines and exact solvers within the same computa-
tional budget. While ConTree remains more effective when
the primary objective is to prove optimality on shallow trees,
CA-ConTree provides a more practical alternative in scenar-
ios where high-quality solutions are required quickly. As fu-
ture work, it could be interesting to combine the two ap-
proaches and dynamically switch strategies, for example af-
ter a certain amount of time.

	Introduction
	Related Works
	Background
	ConTree

	CA-ConTree
	Results
	Conclusion

